直方圖等化 (Histogram Equalization)

Posted on Wed 04 July 2018 in Digital Image Processing

影像的 histogram 指的是,在一張影像當中強度值統計分布,通常橫軸代表強度值,縱軸代表數量。histogram equalization,是一種利用影像的直方圖增強影像對比的方法,其概念如下圖 ( 來自維基百科 )。

histeq

希望影像的強度值分布變得比較均勻。

數學理論

假設一張灰階影像\({x}\),且令\(n_i\)為強度值\(i\)的數量,則在影像中一個像素出現強度值\(i\)的機率為

$$p_x(i)=\frac{n_i}{n}, 0 \leq i < L,$$

其中\(L\)為強度值的總量 ( 對於一般的 8 bit 影像為 256),\(n\)像素的總量,通常會將\(i\)的範圍 normalize 到\([0,1].\)

定義\(p_x\)對應的累積分布 (CDF) 為

$$cdf_x(i)=\sum_{j=0}^{i}p_x(j),$$

我們希望創造一個轉換函數\(k=T(i)\),使新的影像\({p_y(k)}\)有均勻的值方圖分布,相當於線性化影像的 CDF,例如

$$cdf_y(k)=kC, \text{for some constant }C.$$

由 CDF 的性質,則我們可以寫出以下的轉換關係

$$cdf_y(k)=cdf_y(T(i))=cdf_x(i).$$

假設\(p_y(k)=C=\frac{1}{i_{min}-i_{max}}\),則

$$T(i)=\frac{1}{C} \int_{i_{min}}^{i} p_x(i)di+\min(x) \text{ for } i_{min} \leq i \leq i_{max}.$$

局部直方圖等化 (Local Histogram Equalization)

一般的直方圖等化是對整張影像做,通常新的直方圖只會是大概線性的 CDF,因此後來有一種局部版本的直方圖等化,使 CDF 更加的線性。在 scikit-image 有實作此方法,範例如下:

%matplotlib inline

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

from skimage import data
from skimage.util.dtype import dtype_range
from skimage.util import img_as_ubyte
from skimage import exposure
from skimage.morphology import disk
from skimage.filters import rank

matplotlib.rcParams['font.size'] = 11

def plot_img_and_hist(image, axes, bins=256):
    """Plot an image along with its histogram and cumulative histogram.

    """
    ax_img, ax_hist = axes
    ax_cdf = ax_hist.twinx()

    # Display image
    ax_img.imshow(image, cmap=plt.cm.gray)
    ax_img.set_axis_off()

    # Display histogram
    ax_hist.hist(image.ravel(), bins=bins)
    ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0))
    ax_hist.set_xlabel('Pixel intensity')

    xmin, xmax = dtype_range[image.dtype.type]
    ax_hist.set_xlim(xmin, xmax)

    # Display cumulative distribution
    img_cdf, bins = exposure.cumulative_distribution(image, bins)
    ax_cdf.plot(bins, img_cdf, 'r')

    return ax_img, ax_hist, ax_cdf

# Load an example image
img = img_as_ubyte(data.moon())

# Global equalize
img_rescale = exposure.equalize_hist(img)

# Equalization
selem = disk(30)
img_eq = rank.equalize(img, selem=selem)

# Display results
fig = plt.figure(figsize=(8, 5))
axes = np.zeros((2, 3), dtype=np.object)
axes[0, 0] = plt.subplot(2, 3, 1)
axes[0, 1] = plt.subplot(2, 3, 2, sharex=axes[0, 0], sharey=axes[0, 0])
axes[0, 2] = plt.subplot(2, 3, 3, sharex=axes[0, 0], sharey=axes[0, 0])
axes[1, 0] = plt.subplot(2, 3, 4)
axes[1, 1] = plt.subplot(2, 3, 5)
axes[1, 2] = plt.subplot(2, 3, 6)

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
ax_img.set_title('Low contrast image')
ax_hist.set_ylabel('Number of pixels')

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 1])
ax_img.set_title('Global equalize')

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[:, 2])
ax_img.set_title('Local equalize')
ax_cdf.set_ylabel('Fraction of total intensity')

# prevent overlap of y-axis labels
fig.tight_layout()
plt.show()

figure

Jupyter notebook 版本

參考

Histogram equalization

Local Histogram Equalization

分享到: DiasporaTwitterFacebookLinkedInHackerNewsEmailReddit